42 research outputs found

    Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada

    Get PDF
    Background: This study provides experimental evidence for biologically induced precipitation of magnesium carbonates, specifically dypingite (Mg(CO)(OH) ·5HO), by cyanobacteria from an alkaline wetland near Atlin, British Columbia. This wetland is part of a larger hydromagnesite (Mg(CO)(OH) ·4HO) playa. Abiotic and biotic processes for magnesium carbonate precipitation in this environment are compared. Results: Field observations show that evaporation of wetland water produces carbonate films of nesquehonite (MgCO ·3HO) on the water surface and crusts on exposed surfaces. In contrast, benthic microbial mats possessing filamentous cyanobacteria (Lyngbya sp.) contain platy dypingite (Mg (CO)4(OH)·5HO) and aragonite. Bulk carbonates in the benthic mats (δC avg. = 6.7%, δO avg. = 17.2%) were isotopically distinguishable from abiotically formed nesquehonite (δC avg. = 9.3%, δO avg. = 24.9%). Field and laboratory experiments, which emulated natural conditions, were conducted to provide insight into the processes for magnesium carbonate precipitation in this environment. Field microcosm experiments included an abiotic control and two microbial systems, one containing ambient wetland water and one amended with nutrients to simulate eutrophic conditions. The abiotic control developed an extensive crust of nesquehonite on its bottom surface during which [Mg] decreased by 16.7% relative to the starting concentration. In the microbial systems, precipitation occurred within the mats and was not simply due to the capturing of mineral grains settling out of the water column. Magnesium concentrations decreased by 22.2% and 38.7% in the microbial systems, respectively. Laboratory experiments using natural waters from the Atlin site produced rosettes and flakey globular aggregates of dypingite precipitated in association with filamentous cyanobacteria dominated biofilms cultured from the site, whereas the abiotic control again precipitated nesquehonite. Conclusion: Microbial mats in the Atlin wetland create ideal conditions for biologically induced precipitation of dypingite and have presumably played a significant role in the development of this natural Mg-carbonate playa. This biogeochemical process represents an important link between the biosphere and the inorganic carbon pool

    Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?

    Get PDF
    This review examines the detailed chemical insights that have been generated through 150 years of work worldwide on magnesium-based inorganic cements, with a focus on both scientific and patent literature. Magnesium carbonate, phosphate, silicate-hydrate, and oxysalt (both chloride and sulfate) cements are all assessed. Many such cements are ideally suited to specialist applications in precast construction, road repair, and other fields including nuclear waste immobilization. The majority of MgO-based cements are more costly to produce than Portland cement because of the relatively high cost of reactive sources of MgO and do not have a sufficiently high internal pH to passivate mild steel reinforcing bars. This precludes MgO-based cements from providing a large-scale replacement for Portland cement in the production of steel-reinforced concretes for civil engineering applications, despite the potential for CO2 emissions reductions offered by some such systems. Nonetheless, in uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis

    Synergistic effect of quinary molten salts and Ruthenium catalyst for high-power-density Lithium-carbon dioxide cell

    Get PDF
    With a recent increase in interest in metal-gas batteries, the lithium-carbon dioxide cell has attracted considerable attention because of its extraordinary carbon dioxide-capture ability during the discharge process and its potential application as a power source for Mars exploration. However, owing to the stable lithium carbonate discharge product, the cell enables operation only at low current densities, which significantly limits the application of lithium-carbon dioxide batteries and effective carbon dioxide-capture cells. Here, we investigate a high-performance lithium-carbon dioxide cell using a quinary molten salt electrolyte and ruthenium nanoparticles on the carbon cathode. The nitrate-based molten salt electrolyte allows us to observe the enhanced carbon dioxide-capture rate and the reduced discharge-charge over-potential gap with that of conventional lithium-carbon dioxide cells. Furthermore, owing to the ruthernium catalyst, the cell sustains its performance over more than 300 cycles at a current density of 10.0Ag(-1) and exhibits a peak power density of 33.4mWcm(-2). Lithium-carbon dioxide cells are challenging due to the sluggish electron transfer in the Lithium carbonate in aprotic electrolyte. Here, the authors report synergistic effect of molten salt electrolyte and Ruthenium catalyst to enhance the electrochemical performance of Lithium-carbon dioxide batterie

    H0.6Mg7[PO4]3.6[CO3]0.4[OH]3

    No full text
    corecore